
Parallel Integer Relation Detection: Techniques and Applications

David H. Bailey

David J. Broadhurst

Draft 1999-10-12

Abstract

Let fx1; x2; � � � ; xng be a vector of real numbers. An integer relation algorithm is a
computational scheme to �nd the n integers ak, if they exist, such that a1x1+a2x2+ � � �+
anxn = 0. In the past few years, integer relation algorithms have been utilized to discover
new results in mathematics and physics. Existing programs for this purpose require
very large amounts of computer time, due in part to the requirement for multiprecision
arithmetic, yet are poorly suited for parallel processing.

This paper presents a new integer relation algorithm designed for parallel computer
systems, but as a bonus it also gives superior results on single processor systems. Single-
and multi-level implementations of this algorithm are described, together with perfor-
mance results on a parallel computer system. Several applications of these programs
are discussed, including some new results in mathematical number theory, quantum �eld
theory and chaos theory.

AMS MSC: Primary 11Y-16; secondary 11-04

D. H. Bailey: Lawrence Berkeley Laboratory, MS 50B-2239, Berkeley, CA 94720, USA,
dhbailey@lbl.gov. This work was supported by the Director, O�ce of Computational
and Technology Research, Division of Mathematical, Information, and Computational
Sciences of the U.S. Department of Energy, under contract number DE-AC03-76SF00098.

D. J. Broadhurst: Open University, Department of Physics, Milton Keynes MK76AA,
United Kingdom, D.Broadhurst@open.ac.uk.

1

1. Introduction

Let x = (x1; x2; � � � ; xn) be a vector of real numbers. x is said to possess an integer
relation if there exist integers ai, not all zero, such that a1x1+ a2x2+ � � �+ anxn = 0. By
an integer relation algorithm, we mean a practical computational scheme that can recover
(provided the computer implementation has su�cient numeric precision) the vector of
integers ai, if it exists, or can produce bounds within which no integer relation exists.

The problem of �nding integer relations among a set of real numbers was �rst studied
by Euclid, who gave an iterative scheme which, when applied to two real numbers, either
terminates, yielding an exact relation, or produces an in�nite sequence of approximate
relations. The generalization of this problem for n > 2 was attempted by Euler, Jacobi,
Poincar�e, Minkowski, Perron, Brun, Bernstein, among others. The �rst integer relation
algorithm with the required properties mentioned above was discovered in 1977 by Fergu-
son and Forcade [19]. Since then, a number of other integer relation algorithms have been
discovered, including the \HJLS" algorithm [21] (which is based on the LLL algorithm),
and the \PSLQ" algorithm.

2. The PSLQ Algorithm

The PSLQ integer relation algorithm features excellent numerical stability, and it
is e�ective in recovering a relation when the input is known to only limited precision.
It has been generalized to complex and even quaternion number systems. A detailed
discussion of the PSLQ algorithm, together with a proof that the algorithm is guaranteed
to recover a relation in a polynomially bounded number of iterations, is given in [18].
The name \PSLQ" derives from its usage of a partial sum of squares vector and a LQ
(lower-diagonal-orthogonal) matrix factorization.

A simple statement of the PSLQ algorithm, which is entirely equivalent to the original
formulation, is as follows: Let x be the n-long input real vector, and let nint denote the
nearest integer function (for exact half-integer values, de�ne nint to be the integer with

greater absolute value). Select >
q
4=3. Then perform the following operations:

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set
Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
qPn

j=k x
2
j ; endfor. Set t = 1=s1. For k := 1 to n: set

yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n � 1: for i := 1 to j � 1: set Hij := 0; endfor; set
Hjj := sj+1=sj ; for i := j + 1 to n: set Hij := �yiyj=(sjsj+1); endfor; endfor.

4. Reduce H: For i := 2 to n: for j := i� 1 to 1 step �1: set t := nint(Hij=Hjj); and
yj := yj + tyi; for k := 1 to j: set Hik := Hik � tHjk; endfor; for k := 1 to n: set
Aik := Aik � tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has
been detected.

2

1. Select m such that ijHiij is maximal when i = m.

2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A and
H, and the corresponding columns of B.

3. Remove corner on H diagonal: If m � n � 2 then set t0 :=
q
H2

mm +H2
m;m+1,

t1 := Hmm=t0 and t2 := Hm;m+1=t0; for i := m to n: set t3 := Him, t4 := Hi;m+1,
Him := t1t3 + t2t4 and Hi;m+1 := �t2t3 + t1t4; endfor; endif.

4. Reduce H: For i := m + 1 to n: for j := min(i � 1;m + 1) to 1 step �1: set
t := nint(Hij=Hjj) and yj := yj + tyi; for k := 1 to j: set Hik := Hik � tHjk; endfor;
for k := 1 to n: set Aik := Aik� tAjk and Bkj := Bkj + tBki; endfor; endfor; endfor.

5. Norm bound: ComputeM := 1=maxj jHjj j. Then there can exist no relation vector
whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the level of numeric precision
used, then precision is exhausted. If the smallest entry of the y vector is less than
the detection threshold (see below), a relation has been detected and is given in the
corresponding column of B.

We will now review a key result regarding the PSLQ algorithm. Let x be the n-long
input real vector, and let Hx the original H matrix constructed in the initialization step
above. Let j�j denote the Euclidean norm of a vector. Then Theorem 1 of [18] implies that
after any number of iterations (presuming no relation has yet been found), any integer
relation r of the vector x must satisfy

jrj � 1

max1�j�n�1 jHj;j j
This result is the basis for step 5 in the algorithm above.

The PSLQ algorithm, in e�ect, constructs a series of invertible integer matrices whose
product isA (B is the inverse of A), and a series of orthogonal real matrices whose product
is Q (Q is not explicitly computed above), such that H = AHxQ is lower trapezoidal.
Theorem 1 of [18] actually states more than the bound result above. If A is any invertible
integer matrix, and Q is the orthogonal matrix such that AHxQ is lower triangular (such
a Q can always be produced by an LQ matrix factorization of AHx) then this result on
the norm of r still holds. We will take advantage of this fact in section 6.

It should be emphasized that for almost all applications of an integer relation algorithm
such as PSLQ, very high precision arithmetic must be used. Only a very small class of
relations can be recovered reliably with the 64-bit IEEE oating-point arithmetic that is
available on current computer systems. In general, if one wishes to recover a relation of
length n, with coe�cients of maximum size d digits, then it follows by an information
theory argument that the input vector x must be speci�ed to at least nd digits, and one
must employ oating-point arithmetic accurate to at least nd digits. Practical integer
relation programs always require greater precision than this bound. In fact, the di�erence
between the level of precision required for a given problem and the information theory
bound is a key �gure of merit for integer relation algorithms. PSLQ is very e�cient in

3

this regard | for most problems, PSLQ programs can reliably recover relations with only
a few percent more digits of precision than the information theory bound.

The software products Maple and Mathematica include multiple precision arithmetic
facilities. One may also use any of several freeware multiprecision software packages,
such as the MPFUN package (Fortran-77 and Fortran-90 versions are available), which
was developed by the �rst author [1, 2], and the C/C++ version of MPFUN, which was
recently developed by Sid Chatterjee and Hermann Harjono of the University of North
Carolina [16]. The two MPFUN packages permit one to write a program in conventional
Fortran-77/90 or C/C++, respectively, identifying some or all of the variables to be
multiple precision (integer, real or complex). Then in expressions where these variables
appear, the appropriate multiple precision routines are automatically referenced, thus
saving considerable programming e�ort.

In the course of the operation of the PSLQ algorithm on a real computer system, the
entries of the y vector gradually decrease in size, with the largest and smallest entries
usually di�ering by no more than two or three orders of magnitude. When a relation is
detected by the algorithm, the smallest entry of the y vector abruptly decreases to roughly
the multiprecision \epsilon" (i.e. 10�p, where p > nd is the precision level in digits).
The detection threshold in the termination test (iteration step 6) above is typically set
to be a few orders of magnitude greater than the epsilon value, in order to allow for
reliable relation detection in the presence of some numerical round-o� error. The ratio
between the smallest and the largest y entry when a relation is detected can be taken as
a \con�dence level" that the relation is a true relation and not an artifact of insu�cient
numeric precision. Very small ratios at detection, such as 10�100, almost certainly denote
a true relation, although of course such results do not constitute a rigorous proof.

As shown in [18], the PSLQ algorithm is guaranteed to �nd relations in a bounded
number of iterations. However, this result is based on the assumption of perfect, in�nite-
precision arithmetic. In an implementation on a real computer system, one can never rule
out hardware, software and programming errors, although the chances of these errors can
be minimized by independent computations. Also, PSLQ programs utilize multiprecision
software with �nite working precision, and they make decisions based on numerical toler-
ances. Thus it is possible that numerical anomalies can result, although these anomalies
can generally be remedied by using higher precision.

3. Some Applications of the PSLQ Algorithm

One application of PSLQ in the �eld of mathematical number theory is to determine
whether or not a given constant �, whose value can be computed to high precision, is
algebraic of some degree n or less. This can be done by �rst computing the vector
x = (1; �; �2; � � � ; �n) to high precision and then applying an integer relation algorithm.
If a relation is found for x, then this relation vector is precisely the set of integer coe�cients
of a polynomial satis�ed by �. If a relation is not found, the maximumbound determined
by PSLQ means that � cannot be the root of an polynomial of degree less than or equal
to n, with integer coe�cients whose size (Euclidean norm) is less than the established

4

bound. For example, it is well known [8] that

�(2) = 3
1X
k=1

1

k2
�
2k
k

�

�(3) =
5

2

1X
k=1

(�1)k�1
k3
�
2k
k

�

�(4) =
36

17

1X
k=1

1

k4
�
2k
k

�
These results have led some to suggest that

Z5 = �(5)=
1X
k=1

(�1)k�1
k5
�
2k
k

�
might also be a simple rational or algebraic number. Computations using the PSLQ
algorithm [1] have established that if Z5 satis�es a polynomial of degree 25 or less, then
the Euclidean norm of the coe�cients must exceed 2� 1037. Results such as this strongly
suggest that the constants �(n) for n > 4 are not given by simple one-term formulas
as above. Indeed, this \negative" result was fruitful in that it led to the discovery of
multi-term identities for such sums [11]. An example will be given in section 8.

One of the �rst \positive" results of this sort was the identi�cation of the constant
B3 = 3:54409035955 � � � [1]. B3 is the third bifurcation point of the logistic map xk+1 =
rxk(1 � xk), which exhibits period doubling shortly before the onset of chaos. To be
precise, B3 is the smallest value of the parameter r such that successive iterates xk exhibit
eight-way periodicity instead of four-way periodicity. Computations using a predecessor
algorithm to PSLQ found that B3 is a root the polynomial 4913+2108t2�604t3�977t4+
8t5 + 44t6 + 392t7 � 193t8 � 40t9 + 48t10 � 12t11 + t12. A result for B4 will be given in
section 8.

A large number of results were recently found using PSLQ in the course of research on
multiple sums, such as those evaluated in Table 1. After computing the numerical values
of many of these constants, a PSLQ program was used to determine if a given constant
satis�ed an identity of a conjectured form. These e�orts produced numerous empirical
evaluations and suggested general results [3]. Eventually, elegant proofs were found for
many of these speci�c and general results ([6] and [7]). Three examples of identities that
are now proven are given in Table 1. In the table, �(t) =

P1
j=1 j

�t is the Riemann zeta
function, and Lin(x) =

P1
j=1 x

jj�n denotes the polylogarithm function.
It has been found that there is an intimate connection between such multiple sums

and the constants resulting from evaluation of Feynman diagrams in quantum �eld theory
[12, 13]. In particular, the renormalization procedure (which removes in�nities from the
perturbation expansion) entails multiple zeta values de�ned by [9]

�(s1; s2; � � � ; sr) =
X

k1>k2>���>kr>0

1

ks11 ks22 � � � ksrr
The � notation is used in analogy with Riemann's zeta function. The PSLQ algorithm
was used to �nd formulas and identities involving these constants. Again, a fruitful theory
emerged, including a large number of both speci�c and general results [9, 10].

5

P1
k=1

�
1 + 1

2 + � � �+ 1
k

�2
(k + 1)�4 = 37

22680�
6 � �2(3)P1

k=1

�
1 + 1

2
+ � � �+ 1

k

�3
(k + 1)�6 = �3(3) + 197

24
�(9) + 1

2
�2�(7)

� 11
120

�4�(5)� 37
7560

�6�(3)P1
k=1

�
1� 1

2 + � � �+ (�1)k+1 1
k

�2
(k + 1)�3 = 4Li5(

1
2)� 1

30 ln
5(2) � 17

32�(5)

� 11
720

�4 ln(2) + 7
4
�(3) ln2(2) + 1

18
�2 ln3(2) � 1

8
�2�(3)

Table 1: Specimen evaluations, found with PSLQ and now proven

Some recent quantum �eld theory results using PSLQ are even more remarkable. For
example, it has now been shown [14] that in each of ten cases with unit or zero mass,
the �nite part the scalar 3-loop tetrahedral vacuum Feynman diagram reduces to 4-letter
\words" that represent iterated integrals in an alphabet of 7 \letters" comprising the
one-forms
 := dx=x and !k := dx=(��k � x), where � := (1 +

p�3)=2 is the primitive
sixth root of unity, and k runs from 0 to 5. A 4-letter word is a 4-dimensional iterated
integral, such as

U := �(
2!3!0) =
Z 1

0

dx1
x1

Z x1

0

dx2
x2

Z x2

0

dx3
(�1� x3)

Z x3

0

dx4
(1� x4)

=
X

j>k>0

(�1)j+k
j3k

There are 74 four-letter words. Only two of these are primitive terms occurring in the
3-loop Feynman diagrams: U , above, and

V := Real[�(
2!3!1)] =
X

j>k>0

(�1)j cos(2�k=3)
j3k

:

The remaining terms in the diagrams reduce to products of constants found in Feynman
diagrams with fewer loops. These ten cases as shown in Figure 1. In these diagrams,
dots indicate particles with nonzero rest mass. The formulas that have been found for
the corresponding constants are given in Table 2. The constant C =

P
k>0 sin(�k=3)=k

2.

J
J
J
JJ

��
�

HH
H
s

V1

J
J
J
JJ

��
�

HH
H

s s

V2A

J
J
J
JJ

��
�

HH
H

s

s

V2N

J
J
J
JJ

��
�

HH
H

s s

s

V3T

J
J
J
JJ

��
�

HH
Hs

s

s

V3S

J
J
J
JJ

��
�

HH
H

s

s

s

V3L

J
J
J
JJ

��
�

HH
Hs

s

s

s

V4A

J
J
J
JJ

��
�

HH
H

s

s

s

s

V4N

J
J
J
JJ

��
�

HH
H

s

s

s

s

s

V5

J
J
J
JJ

��
�

HH
H

s

s

s

s

s

s

V6

Figure 1: The ten tetrahedral cases

4. A New Formula for Pi

Through the centuries mathematicians have assumed that there is no shortcut to
computing just the n-th digit of �. Thus, it came as no small surprise when such an

6

V1 = 6�(3) + 3�(4)

V2A = 6�(3) � 5�(4)

V2N = 6�(3) � 13
2
�(4) � 8U

V3T = 6�(3) � 9�(4)

V3S = 6�(3) � 11
2 �(4) � 4C2

V3L = 6�(3) � 15
4 �(4) � 6C2

V4A = 6�(3) � 77
12
�(4) � 6C2

V4N = 6�(3) � 14�(4) � 16U

V5 = 6�(3) � 469
27
�(4) + 8

3
C2 � 16V

V6 = 6�(3) � 13�(4) � 8U � 4C2

Table 2: Evaluations of the 10 constants corresponding to the 10 cases in Figure 1

algorithm was recently discovered [4]. In particular, this simple scheme allows one to
compute the n-th hexadecimal (or binary) digit of � without computing any of the �rst
n � 1 digits, without using multiple-precision arithmetic software, and at the expense of
very little computer memory. The one millionth hex digit of � can be computed in this
manner on a current-generation personal computer in only about 60 seconds run time.

This scheme is based on the following new formula, which was discovered using PSLQ:

� =
1X
k=0

1

16k

�
4

8k + 1
� 2

8k + 4
� 1

8k + 5
� 1

8k + 6

�

It is likely the �rst instance in history of a signi�cant new formula for � discovered by
computer. Further base-2 results are given in [4, 15]. In [14] base-3 results were obtained,
including

�2 =
2

27

1X
k=0

1

729k

"
243

(12k + 1)2
� 405

(12k + 2)2
� 81

(12k + 4)2
� 27

(12k + 5)2

� 72

(12k + 6)2
� 9

(12k + 7)2
� 9

(12k + 8)2
� 5

(12k + 10)2
+

1

(12k + 11)2

#

5. Multi-Level Implementations of PSLQ

In spite of the relative e�ciency of PSLQ compared to the other algorithms in the
literature, computer run times of programs that straightforwardly implement the PSLQ
algorithm are typically quite long. Even modest-sized problems can require many hours
for solution on a current personal computer or workstation. This is mainly due to the cost
of using high precision arithmetic software for nearly every operation in the algorithm.

As it turns out, it is possible to perform most, if not all, of the PSLQ iterations us-
ing ordinary 64-bit computer arithmetic, with only occasional recourse to multiprecision
arithmetic. In this way, run times can be dramatically reduced. Here is a sketch of this
scheme, which will be referred to as a \two-level" implementation of the PSLQ algorithm.

7

In the following, \double precision" means the 64-bit IEEE hardware arithmetic avail-
able on most current computer systems, and �y, �A, �B and �H denotes double precision
counterparts to the arrays y, A, B and H in the PSLQ algorithm.

First, perform the multiprecision initialization steps of PSLQ as given in section 2
above. Then perform a double precision \re-initialization" step: set �A and �B to the n�n
identity matrix; set �y to the best double precision approximation of the current y vector,
multiplied by a scale factor so that its largest entry is unity; and set �H to the best double
precision approximation of the current H matrix. For some extremely large problems it
may be necessary to scale the �H matrix to avoid numeric overow. Then perform an
LQ (lower-diagonal-orthogonal) matrix factorization on �H , and replace �H by the lower
diagonal portion of the result (the upper right portion is zeroed). The subroutine DQRDC
of the Linpack library [17] may be employed for this factorization, provided both the input
and output matrices are transposed.

Next, perform PSLQ iterations using the double precision arrays. In the course of
these iterations, the entries of �A and �B (which contain integer values, although stored as
IEEE double precision data), steadily increase in size. Monitor the entries of these ma-
trices as they are updated, and when any entry reaches a certain threshold (the authors
use 1013), or when the smallest �y entry becomes smaller than a certain threshold (the au-
thors use 10�14), then update the multiprecision arrays by means of matrix multiplication
operations, as follows:

y := y � �B
B := B � �B
A := �A �A
H := �A �H

After these updates are performed, the entries of the A matrix and the y vector are
checked, as in the termination test (iteration step 6) of PSLQ, and a norm bound is
computed. If neither of the termination conditions holds, then the double precision arrays
are re-initialized again as mentioned above, another set of double precision iterations are
performed, and the process continues.

This general scheme works well for many problems, but there are several di�culties
that must be dealt with in a fully robust implementation. One di�culty is that at some
point in the computation (typically at the very beginning), the y vector may have a
dynamic range that exceeds the range (11 or 12 orders of magnitude) that can be safely
handled using double precision iterations. Another di�culty is that occasionally an entry
is produced in the �A or �B matrix that exceeds the largest whole number (253 = 9:007 � � ��
1015) that can be exactly represented as 64-bit IEEE data. A straightforward solution
when such a condition occurs is to abandon the current iteration, restore a previous
iteration's values of �y, �A, �B and �H, update the multiprecision arrays as above, perform
an LQ matrix factorization on the H matrix, and then perform iterations using full
multiprecision arithmetic until these special conditions no longer hold.

A more e�cient solution for large problems that require very high precision is to
employ \intermediate precision", in other words a �xed level of precision (the authors
use 125 digits) that is intermediate between double precision and full multiprecision.

8

Updating the full multiprecision arrays from the intermediate precision arrays is done
with matrix multiplication operations in a manner precisely analogous to that described
above. Incorporating intermediate precision in this manner gives rise to what we will refer
to as a \three-level" implementation of PSLQ.

One additional improvement that can be made to each of these schemes is to omit
multiprecision computation of the A matrix (although the double precision and interme-
diate precision equivalents of A must be computed). The multiprecision A matrix (which
is the inverse of the B matrix) is used in the PSLQ algorithm only to determine when ex-
ecution must be halted due to the exhaustion of numeric precision. However, exhaustion
of numeric precision can alternatively be handled by halting iterations when the smallest
y entry is su�ciently close to the multiprecision epsilon level (the authors use a factor of
1025).

These three PSLQ schemes (one-level, two-level and three-level) have been imple-
mented by the �rst author, using the Fortran-90 MPFUN software [2]. Some perfor-
mance results are shown in Table 3 for a class of problems. Here r; s de�ne the constant
� = 31=r � 21=s, which is algebraic of degree rs, and n = rs + 1. The n-long vector
of coe�cients of the polynomial satis�ed by � can thus be obtained by using a PSLQ
program, as explained in section 3. The column headed \Iterations" gives the number
of PSLQ iterations required for solution, while \Digits" gives the working precision level
used, in decimal digits. \Time" gives CPU time in seconds for runs on a single processor
of an SGI Origin-2000 system with 195 MHz R10000 CPUs.

It can be seen from these results that the two-level PSLQ program is up to 65 times
faster than the one-level program, yet it �nds relations just as well, usually in exactly the
same course of iterations as the one-level program. The three-level program is faster than
the two-level program for large problems, even though the special conditions mentioned
above rarely arise in the particular problems mentioned in the table. The reason for this
fortunate circumstance appears to be improved data locality in the three-level scheme,
which is advantageous on modern cache-based computer systems. Fully detailed computer
programs are available from the authors at the web site
http://www.nersc.gov/~dhbailey.

6. The Multi-Pair Algorithm

Even with the substantial accelerations described in the previous section, run times
are painfully long for some very large problems of current interest in mathematics and
physics. Thus one is led to consider employing highly parallel supercomputers, which have
the potential of performance hundreds of times faster than for single-processor scienti�c
workstations and personal computers.

Unfortunately, the standard PSLQ algorithm appears singularly unsuited for modern
parallel computer systems, which require high levels of coarse-grained concurrency. The
main di�culty is that large integer relation problems may require millions of PSLQ it-
erations, each of which must be completed before the next begins. Further, within an
individual iteration, the key reduction operation (iteration step 4) has a recursion that
inhibits any possibility for parallel execution, except at the innermost loop level. These
considerations have led some researchers in the �eld to conclude that there is no hope for
signi�cant parallel acceleration of PSLQ-type computations.

9

One-level Two-level Three-level
r; s n Iterations Digits Time Digits Time Digits Time
5,5 26 5143 180 32.37 190 1.29
5,6 31 9357 240 105.48 250 3.16
6,6 37 15217 310 298.85 320 7.19
6,7 43 25361 420 942.66 420 17.22
7,7 50 36947 500 2363.71 510 36.29
7,8 57 60817 680 90.08
8,8 65 86684 850 195.19 910 233.48
8,9 73 124521 1050 425.67 1120 460.34
9,9 82 174140 1310 934.96 1370 922.90
9,10 91 245443 1620 2032.69 1680 1780.65
10,10 101 342931 2000 4968.64 2060 3366.92

Table 3: Run times for the three PSLQ programs

But it turns out that a variant of the PSLQ algorithm can be formulated that dra-
matically reduces the number of sequential iterations that must be performed, while at
the same time exhibiting moderately high concurrency in the major steps of individual
iterations. To that end, consider the following algorithm, which will be referred to as the

\multi-pair" variant of PSLQ. Here >
q
4=3 as before, and � = 0:4.

Initialize:

1. For j := 1 to n: for i := 1 to n: if i = j then set Aij := 1 and Bij := 1 else set
Aij := 0 and Bij := 0; endfor; endfor.

2. For k := 1 to n: set sk :=
qPn

j=k x
2
j ; endfor; set t = 1=s1; for k := 1 to n: set

yk := txk; sk := tsk; endfor.

3. Initial H: For j := 1 to n � 1: for i := 1 to j � 1: set Hij := 0; endfor; set
Hjj := sj+1=sj ; for i := j + 1 to n: set Hij := �yiyj=(sjsj+1); endfor; endfor.

Iteration: Repeat the following steps until precision has been exhausted or a relation has
been detected.

1. Sort the entries of the (n � 1)-long vector fijHiijg in decreasing order, producing
the sort indices.

2. Beginning at the sort index m1 corresponding to the largest ijHiij, select pairs of
indices (mi;mi + 1), where mi is the sort index. If at any step either mi or mi + 1
has already been selected, pass to the next index in the list. Continue until either
�n pairs have been selected, or the list is exhausted. Let p denote the number of
pairs actually selected in this manner.

10

3. For i := 1 to p, exchange the entries of y indexed mi and mi + 1, and the corre-
sponding rows of A, B and H; endfor.

4. Remove corners on H diagonal: For i := 1 to p: if mi � n � 2 then set t0 :=q
H2

mi;mi
+H2

mi;mi+1, t1 := Hmi;mi
=t0 and t2 := Hmi;mi+1=t0; for i := mi to n: set

t3 := Hi;mi
; t4 := Hi;mi+1; Hi;mi

:= t1t3 + t2t4; and Hi;mi+1 := �t2t3 + t1t4; endfor;
endif; endfor.

5. Reduce H: For i := 2 to n: for j := 1 to n � i + 1: set l := i + j � 1; for
k := j + 1 to l � 1: set Hlj := Hlj � TlkHkj ; endfor; set Tlj := nint(Hlj=Hjj) and
Hlj := Hlj � TljHjj ; endfor; endfor.

6. Update y: For j := 1 to n � 1: for i := j + 1 to n: set yj := yj + Tijyi; endfor;
endfor.

7. Update A and B: For k := 1 to n: for j := 1 to n � 1: for i := j + 1 to n: set
Aik := Aik � TijAjk and Bjk := Bjk + TijBik; endfor; endfor; endfor.

8. Norm bound: ComputeM := 1=maxj jHjj j. Then there can exist no relation vector
whose Euclidean norm is less than M .

9. Termination test: If the largest entry of A exceeds the level of numeric precision
used, then precision is exhausted. If the smallest entry of the y vector is less than
the detection threshold (see section 2), a relation has been detected and is given in
the corresponding row of B.

There are several di�erences between this algorithm and the standard one-level PSLQ
algorithm: (1) there is no reduction step in the initialization; (2) the B matrix is trans-
posed from the standard PSLQ algorithm; (3) up to �n disjoint pairs (not just a single
pair) of adjacent indices are selected in each iteration; (4) the H reduction loop proceeds
along successive lower diagonals of the H matrix; (5) a T matrix is employed, which
contains the t multipliers of the standard PSLQ; and (6) the y, A and B arrays are not
updated with H, but in separate loops.

Since the multi-pair algorithm maintains the H matrix in lower triangular form, and
the A and B matrices are maintained as invertible integer matrices, one can conclude
from Theorem 1 of [18] that the norm bound stated in iteration step 8 above is valid, by
an argument similar to that used for the original PSLQ algorithm.

Unfortunately, we cannot o�er a proof that the multi-pair algorithm is guaranteed
to recover a relation in a bounded number of iterations, as can be done with PSLQ. In
fact, it has been found that for certain special problems, the multi-pair algorithm, as
stated above, falls into a repeating cycle, with a period of (usually) two iterations. Our
implementation deals with this di�culty by comparing the y vector at the end of each
iteration with saved copies from eight previous iterations, and if a duplication is found,
then only one pair of indices is selected in step 2 of the next iteration (so that the next
iteration is equivalent to a standard PSLQ iteration). It should be added, however, that
these repeating situations are extremely rare in nontrivial problems. We have not seen
any instances of such repeats when n � 20.

11

On the positive side, we have found, based on our experience with a wide variety of
sample problems, that the norm bound increases much more rapidly than in the standard
PSLQ. Indeed, it appears that the selection of up to �n disjoint pairs of indices in step 2
above has the e�ect of reducing the iteration count by nearly the factor �n. This results
in a signi�cant saving in the number of expensive H reduction and array update steps.
More importantly, without this dramatic reduction in the sequential iteration count, an
e�cient parallel implementation would not be possible. Parallel issues will be discussed
in greater detail in the next section.

Given that the multi-level implementations of PSLQ are so much faster than the
standard one-level PSLQ, one might also wonder whether there exist analogous multi-level
implementations of the multi-pair algorithm. Happily, the multi-level scheme sketched in
section 5 can be adopted almost without change. One change that is required is that the
multiprecision arrays are updated as follows:

y := �B � y
B := �B �B
A := �A �A
H := �A �H

Note that y and B are updated here in the same manner as the A and H arrays. This
change stems from the fact that the B matrix in the multi-pair scheme is transposed from
the B matrix in the standard PSLQ algorithm.

The multi-pair algorithm and the multi-level implementations described here were all
devised to permit parallel processing. But it turns out that these programs also run faster
on a single processor system, compared with the standard PSLQ equivalents. Some one-
processor timings are shown in Table 4 for the suite of test problems used in Table 3.
Note for example that the one-level multi-pair program is up to twice as fast as the one-
level PSLQ program, and the three-level multi-pair program is up to 22% faster than the
three-level PSLQ program. Note also that the iteration counts are reduced by a factor of
up to 34. Finally, note that the multi-pair schemes require slightly less numeric precision
for solution than their PSLQ counterparts. The reason for this unanticipated bene�t is
not known.

7. Parallel Implementations of the Multi-Pair Algorithm

The key steps of the multi-pair iterations are all suitable for parallel execution. First
note that the p row exchanges in iteration step 3, as well as the p corner removal operations
in step 4, can be performed concurrently, since the p pairs of indices (mi;mi + 1) are all
disjoint. Secondly, the reorganized H matrix reduction step (step 5), which is equivalent
to the H matrix reduction scheme in the standard PSLQ, may be performed concurrently
at the second loop level, instead of only at the innermost loop level as in standard PSLQ.
The update of the A and B arrays (step 7) is even more favorable to parallel processing:
this loop may be performed concurrently at the outermost loop level. The change in the
B matrix, which is transposed from the standard PSLQ algorithm, is favorable for an
implementation on a distributed memory parallel computer.

The two- and three-level multi-pair schemes are also well suited for parallel computa-
tion. This is because the dominant cost of these programs is the matrix multiplication

12

One-level Two-level Three-level
r; s n Iterations Digits Time Digits Time Digits Time
5,5 26 558 180 26.08 180 1.48
5,6 31 840 230 70.71 240 3.43
6,6 37 1136 310 189.27 310 7.84
6,7 43 1625 400 479.07 410 17.22
7,7 50 2071 500 1130.85 500 35.64
7,8 57 2410 660 69.39
8,8 65 3723 800 169.62 880 214.66
8,9 73 4943 1010 358.07 1100 427.29
9,9 82 6169 1260 744.20 1320 804.51
9,10 91 7850 1560 1556.37 1600 1450.29
10,10 101 10017 1890 3283.08 1950 2747.12

Table 4: Run times for the three multi-pair programs

operations involved in the multiprecision array updates, and these matrix multiplica-
tions can be performed concurrently at the outermost loop level. The parallel techniques
mentioned in the previous paragraph can still be applied to the double precision and in-
termediate precision iterations. It turns out, though, that the double precision iterations
run so rapidly that parallel processing of these iterations is often not worth the overhead.
Nonetheless, we have achieved modest acceleration on very large problems by using par-
allel processing on some steps of double precision iterations. Some parallel performance
results will be given in the next section.

8. Large Applications and Parallel Performance

Four recent applications will be described here, each of which involves very large integer
relation problems. Thus they are excellent test cases for the new multi-pair programs.

Reduction of Euler sums: In section 3, we mentioned recent research on multiple zeta
values, which play a key role in quantum �eld theory [13]. More generally, one may de�ne
Euler sums by [9]

�

s1; s2 � � � sr
�1; �2 � � � �r

!
:=

X
k1>k2>���>kr>0

�k11
ks11

�k22
ks22

� � � �
kr
r

ksrr

where �j = �1 are signs and sj > 0 are integers. When all the signs are positive, one
has a multiple zeta value. Constants with alternating signs appear in problems such as
computation of the magnetic moment of the electron.

It was conjectured by the second author that the dimension of the space of Euler sums
with weight w :=

P
j sj is the Fibonacci number Fw+1 = Fw + Fw�1, with F1 = F2 = 1.

Complete reductions of all Euler sums to a basis of size Fw+1 have been obtained with
PSLQ at weights w � 9. At weights w = 10 and w = 11 the conjecture has been
stringently tested by application of PSLQ in more than 600 cases. At weight w = 11
such tests involve solving integer relations of size n = F12 + 1 = 145. In a typical case,

13

each of the 145 constants was computed to more than 5,000 digit accuracy, and a working
precision level of 5,000 digits was employed in the three-level multi-pair program. A
relation was detected at iteration 31,784. The minimum and maximum y vector entries
at the point of detection were 9:515�10�4970 and 4:841�10�4615, respectively. The ratio of
these two values (i.e. the \con�dence level") is a tiny 1:965� 10�355. Moreover, the ratio
of the last two recovered integer coe�cients is precisely �11! = �39916800. These facts
argue strongly against the possibility that the recovered relation is a spurious numerical
artifact.

Bifurcation to a 16-cycle: A second large application that we shall mention here is the
problem of determining the polynomial satis�ed by the constant B4 = 3:564407268705 � � �,
the fourth bifurcation point of the logistic map xk+1 = rxk(1�xk). In section 3 we noted
that an 8-cycle begins at r = B3, where B3 satis�es a polynomial equation of degree 12.
At r = B4, this gives way to 16-cycle. It has been recognized that all Bk are algebraic,
but nothing has been known about the degrees or the coe�cients of the polynomials
satis�ed by these constants for k > 3. Some conjectural reasoning had suggested that
B4 might satisfy a 240-degree polynomial, and some further analysis had suggested that
the constant � = �B4(B4 � 2) might satisfy a 120-degree polynomial. In order to test
this hypothesis, the three-level multi-pair program was applied to the 121-long vector
(1; �; �2; � � � ; �120).

In this case the input data was computed to over 10,000 digit accuracy, and a working
precision of 9,500 digits was employed in the three-level multi-pair program. A relation
was detected at iteration 56,666. The minimumand maximumy vector entries at the point
of detection were 1:086�10�9428 and 3:931�10�8889, which form the ratio 2:763�10�540.
Further, the recovered integer coe�cients descend monotonically from 25730 � 1:986�1072
to one. Again, these facts argue very strongly against the solution being a spurious
numerical artifact.

Reductions to Multiple Clausen Values: As a third application, consider sums of
the form

S(k) :=
X
n>0

1

nk
�
2n
n

�

with, for example, S(4) = 17�4=3240. Researchers have sought analytic evaluations of
these constants for k > 4. As a result of PSLQ computations, the constants fS(k) j k =
5 : : : 20g have been evaluated in terms of multiple zeta values and multiple Clausen values

of the form [11]

M(a; b) :=
X

n1>n2>:::>nb>0

sin(n1�=3)

na1

bY
j=1

1

nj

with, for example,

S(9) = �
�
2M(7; 1) +

8

3
M(5; 3) +

8

9
�(2)M(5; 1)

�
� 13921

216
�(9)

+
6211

486
�(7)�(2) +

8101

648
�(6)�(3) +

331

18
�(5)�(4) � 8

9
�3(3)

14

The evaluation of the constant S(20) is a 118-dimensional integer relation problem, which
required 4800 digit arithmetic. In this case a relation was detected at iteration 27,531.
The minimum and maximum y vector entry at detection were 7:170�10�4755 and 3:513�
10�4375, which gives a con�dence ratio of 2:040 � 10�380. The actual solution for this
problem is shown in Table 5. In this table, irreducible multiple zeta values such �(5; 3) :=P

j>k>0 j
�5k�3 occur. Moreover, there are alternating Euler sums, such as �(9; 3) :=P

j>k>0(�1)jj�9 (�1)kk�3, where an alternating sign is indicated by a bar. The presence
of the latter results from another discovery obtained with PSLQ [12], namely that some
multiple zeta values may be reduced to alternating Euler sums with fewer summations.
Finally, the combinations [11]

�A(a; b; c) := �(a; b; c) + �(a; b; c) + �(a; b; c)

serve to reduce 5-fold multiple zeta values to 3-fold alternating Euler sums.
These three problems were �rst solved by the second author running a three-level

implementation of PSLQ on a DecAlpha machine at the Open University, with a single
433 MHz processor, and 1 Gbyte of main memory. They were then used as benchmarks for
a multiprocessor version of the new three-level multi-pair program, using the OpenMP
programming model, on a 64-CPU SGI Origin-2000 system at the Lawrence Berkeley
Laboratory. Run times are given in Table 6. Timings on 48 processors show a speedup
of 19.40 times on the Fibonacci conjecture problem, 22.44 times on the B4 problem,
and 17.81 times on the S(20) problem. Given the challenge of very limited concurrency
inherent in this type of calculation, we are encouraged by these �gures.

A Polylogarithm Ladder Calculation: The fourth calculation arose from the discov-
ery by the second author that

�630 � 1 =
(�315 � 1)(�210 � 1)(�126 � 1)2(�90 � 1)(�3 � 1)3(�2 � 1)5(�� 1)3

(�35 � 1)(�15 � 1)2(�14 � 1)2(�5 � 1)6�68

where

�1 = 1:176280818259917506544070338474035050693415806564 : : :

is the largest real root of Lehmer's remarkable polynomial [22]

0 = 1 + �� �3 � �4 � �5 � �6 � �7 + �9 + �10

The above cyclotomic relation was �rst discovered by a PSLQ computation, although
subsequently proven by repeated substitution for �10. This result then suggested that an
integer relation may exist between a certain set of 125 related polylogarithmic constants.
In particular, it was conjectured that there may be integers a, bj, ck such that

a �(17) =
8X

j=0

bj �
2j(log�)17�2j +

X
k2D(S)

ck Li17(�
�k)

where the 115 indices k in Lin(��k) :=
P

r>0 �
�kr=rn are drawn from the set, D(S), of

positive integers that divide at least one element of

S = f29; 47; 50; 52; 56; 57; 64; 74; 75; 76; 78; 84; 86; 92; 96; 98; 108; 110; 118; 124; 130;
132; 138; 144; 154; 160; 165; 175; 182; 186; 195; 204; 212; 240; 246; 270; 286; 360; 630g

15

525990827847624469523748125835264000 S(20) =

� 15024402006639545347476341466358480896000 �M(17; 2) + 614357286926025380403737810975588352000 �M(15; 4)

� 33663412982247966049519880053456896000 �M(13; 6) + 204785762308675126801245936991862784000 �M(15; 2) �(2)

� 11221137660749322016506626684485632000 �M(13; 4) �(2) � 7792456708853695844796268530892800000 �M(13; 2) �(4)

+ 65832426829545801661197345390290033253800417 �(20) � 1655150248639886171642409815524246277640960 �(17; 3)

� 87407857867972646063318792204545819545600 �(17) �(3) + 239001490518032437117759318070284363571904 �(15; 5)

+ 6475497072134876357497140759587182503936 �(15; 3) �(2) � 11343388910891633971745524946475581811513600 �(15) �(5)

+ 76505310594054968968541596301477435326464 �(15) �(3) �(2) � 5427506872793330621343984298741119861120 �(14) �2(3)

� 33725186900885181072542216636542494977280 �(13; 7)� 1079236594149043072329862323338197518336 �(13; 5) �(2)

� 50485931801186079342010895425290633062400 �(13; 3) �(4) � 24430610879956273104022963748303711510447040 �(13) �(7)

+ 796530831594947602965411064203762718396416 �(13) �(5) �(2) � 48476322702940293939397763722185147340800 �(13) �(4) �(3)

� 2459446142542578280833853163647795200 �(12) �(5; 3) � 7183917419981873615355846546110107008000 �(12) �(5) �(3)

+ 6554036738326690659991123688262156748800 �(11; 5) �(4) � 674581129238392279111385274785342054400 �(11; 3; 3; 3)

+ 155743130140661296228413518954716262400 �(11; 3; 3) �(3) + 13856996845301527891423305382301558784000 �(11; 3) �(6)

+ 339959536740516778440799419126460108800 �(11; 3) �2(3)� 35543027806069609369237745997797431835122560 �(11) �(9)

+ 1912599458053045671374932296869893271531520 �(11) �(7) �(2) � 8624509220693012537969847600322793702400 �(11) �(6) �(3)

� 159424648200337153322748394462255349760000 �(11) �(5) �(4) � 386372041666595966843560058208603955200 �(11) �3(3)

� 4526144521471219675886040639917260800 �(10) �(7; 3) � 4235684121072319605030836248657970626560 �(10) �(7) �(3)

� 4274427562442524135198151261132645652480 �(10) �2(5) + 174910231480430088343102177690512998400 �(9; 5; 3; 3)

+ 23201851844071266080584141499247820800 �(9; 5; 3) �(3) � 5388965272775430297200443154254448394240 �(9; 5) �(6)

� 96144480802344282256962346694615654400 �(9; 5) �2(3) � 564799665543005814719751486159037931520 �(9; 3; 5; 3)

+ 192405432086205157974414874044727296000 �(9; 3; 3; 3) �(2) � 437636171132005416578131168531552665600 �(9; 3; 3) �(5)

+ 82410232260928579141238186701396377600 �(9; 3; 3) �(3) �(2) � 56820309831551194167334052913378508800 �(9; 3) �(8)

� 78290750182007491017999587160883200 �(9; 3) �(5; 3) + 173223299338939829293781467642177536000 �(9; 3) �(5) �(3)

� 5389461879726322601463723747508224000 �(9; 3) �2(3) �(2) + 1395360857314382550903663041050280719202304 �2(9) �(2)

� 1543454230261900138881951172107169382400 �(9) �(8) �(3) � 511939532590839950285975762448130830336000 �(9) �(7) �(4)

+ 89785104680812821069278191239404195328000 �(9) �(6) �(5) � 1309132727087420901925773113189990400 �(9) �(5; 3) �(3)

+ 1731994708600523066371520212640192716800 �(9) �(5) �2(3) � 1309132727087420901925773113189990400 �(9) �(3; 5; 3)

+ 49863866344508636305947249931911168000 �(9) �3(3) �(2) � 13797482183512283560940162429818580121600 �(8) �(7) �(5)

+ 20525248296522064841059215485763379200 �(8) �4(3) + 533245759266957435712480647773027635200 �(7; 7; 3; 3)

+ 39157503832984121716572521716488652800 �(7; 7; 3) �(3) + 223377519430349618539918571265503416320 �(7; 5; 5; 3)

� 23700768289019448234404348103552000000 �(7; 5; 5) �(3) � 184392479550115407127835175133101465600 �(7; 5; 3; 5)

� 192646077208687087875906081369587712000 �(7; 5; 3; 3) �(2) + 609805989326475901096307023020578611200 �(7; 5; 3) �(5)

� 92883012339775157113672910718900633600 �(7; 5; 3) �(3) �(2) � 1083004232781819170351004903486259200 �(7; 3; 5; 3) �(2)

+ 642228810086780199757027863429120000 �(7; 3; 3) �(7) + 1715165074541342577478967041720320000 �(7; 3; 3) �(5) �(2)

� 256615593289239779065106729533440000 �2(7; 3)� 117611319397120633884272025717964800 �(7; 3) �(5; 3) �(2)

+ 266618082812610684431891803668480000 �(7; 3) �2(5) + 68054784737327925282389654900302533120000 �2(7) �(6)

+ 1571090732393362601235892759430587238400 �2(7) �2(3) � 1016434130097344129482122765187153920 �(7) �(5; 5; 3)

� 293590313182528091317498451853312000 �(7) �(5; 3) �(5) + 1133345755060987206065174842254330470400 �(7) �2(5) �(3)

+ 62419983317149231400720825830146048000 �(7) �(5) �2(3) �(2) + 101029201230288166627783621503025152000 �(7) �(4) �3(3)

� 3927398181262262705777319339569971200 �(6) �(5; 3; 3; 3) + 88122944806249232884839801748733952000 �(6) �(5) �3(3)

� 1963699090631131352888659669784985600 �(6) �(3; 5; 3) �(3) + 1239443914180202003982888789718597632 �(5; 5; 5; 3) �(2)

� 2714534591307431519290045171362693120 �(5; 5; 3) �(5) �(2) � 7854796362524525411554638679139942400 �(5; 3; 3; 3; 3; 3)

+ 7854796362524525411554638679139942400 �(5; 3; 3; 3; 3) �(3) � 3927398181262262705777319339569971200 �(5; 3; 3; 3) �2(3)

� 117611319397120633884272025717964800 �(5; 3) �2(5) �(2) + 327283181771855225481443278297497600 �(5; 3) �4(3)

� 310534753804603441554226729609432166400 �4(5) + 46595661441120443976355182952120320000 �3(5) �(3) �(2)

+ 151543801845432249941675432254537728000 �2(5) �(4) �2(3) � 888340064809321326306774612521779200 �(5) �5(3)

� 654566363543710450962886556594995200 �(3; 5; 3) �3(3) + 15584913417707391689592537061785600 �6(3) �(2)

+ 31338860750207444579474396657221632000 �(8) �(9; 3) + 18542546095738616293736744327577600000 �(5) �(3) �(9; 3)

+ 8537710593272460830117524829896704000 �2(3) �(2) �(9; 3) + 675871149225360968655980361248931840000 �(4) �(13; 3)

+ 254015007537749154775389871602030084096 �(2) �(15; 3)� 1692980876937872291412185599949615923200 �(17; 3)

� 12361697397159077529157829551718400000 �(5) �A(9; 3; 3) � 11383614124363281106823366439862272000 �(3) �(2) �A(9; 3; 3)

+ 212786017863098254535236772683579392000 �(3) �A(11; 3; 3) + 174238991699437976124847445508096000 �(2) �(6; 5; 4; 3)

+ 65242291818339575848332989300736000 �(8; 5; 4; 3) + 103014144976325646076315246264320000 �(6; 5; 6; 3)

Table 5: Solution for S(20) found with the three-level program

16

Fibonacci B4 S(20)
Processors Time Speedup Time Speedup Time Speedup
1 47788 1.00 90855 1.00 23208 1.00
2 24665 1.94 46134 1.97 11973 1.94
4 12945 3.69 23966 3.79 6305 3.68
8 7076 6.75 12924 7.03 3470 6.69
16 4180 11.43 7424 12.24 2126 10.92
32 2994 15.96 4865 18.68 1548 14.99
48 2463 19.40 4049 22.44 1303 17.81

Table 6: Timings for three large problems using the parallel three-levelmulti-pair program

This relation was found using an implementation of the three-level multi-pair algo-
rithm, programmed in the Message Passing Interface (MPI) [20] programming model,
and run on the SGI/Cray T3E computer system at Lawrence Berkeley Laboratory. In
spite of the higher latency on this distributed memory system, which presents a greater
challenge for an e�cient multiprocessor implementation, we were able to achieve rea-
sonable scaling e�ciency with 64 CPUs. The actual run employed 50,000 decimal digit
arithmetic, and required approximately 44 hours on 32 CPUs, completing after 236,713
iterations. The minimum and maximum y entries at detection were 1:649 � 10�49718 and
1:363�10�36364, respectively, which gives a con�dence ratio less than 10�13354. The largest
of the resulting integer coe�cients had 292 digits. We believe this to be the largest integer
relation computation ever performed.

9. Conclusion

We have accelerated the conventional implementation of the PSLQ algorithm in three
ways. First, we utilized a two-level and a three-level scheme, which permit most if not all
iterations to be performed using ordinary 64-bit double precision arithmetic, and updat-
ing the multiprecision arrays only as needed. This resulted in a speedup of up to 65 times
over the straightforward one-level program. Secondly, we developed a new integer relation
algorithm, a variant of PSLQ that we have termed the \multi-pair" algorithm. We also
demonstrated two-level and three-level implementations of this new algorithm. These
techniques resulted in an additional speedup of up to 22%, comparing the three-level
multi-pair program to the three-level PSLQ program. Finally, we showed how that this
new algorithm, unlike PSLQ, is reasonably well suited for parallel processing. We demon-
strated a parallel three-level implementation of the multi-pair algorithm that achieved an
additional speedup of up to 22 times.

We have also applied these programs to four large integer relation problems, obtaining
results that were not previously known in the literature, and which would have required
years of computation using more conventional means. We believe that these demonstra-
tions open up a novel way of doing pure and applied mathematics. We are con�dent that
many more discoveries can be made in this manner.

17

References

[1] David H. Bailey, \Multiprecision Translation and Execution of Fortran Programs",
ACM Transactions on Mathematical Software, vol. 19, no. 3, 1993, pp. 288{319.

[2] David H. Bailey, \A Fortran-90 Based Multiprecision System", ACM Transactions

on Mathematical Software, vol. 21, no. 4, 1995, pg. 379-387. This software and
documentation is available from the URL http://www.nersc.gov/~dhbailey.

[3] David H. Bailey, Jonathan M. Borwein and Roland Girgensohn, \Experimental
Evaluation of Euler Sums", Experimental Mathematics, vol. 4, no. 1, 1994, pp.
17{30.

[4] David H. Bailey, Peter B. Borwein and Simon Plou�e, \On The Rapid
Computation of Various Polylogarithmic Constants", Mathematics of Computation,
vol. 66, no. 218, 1997, pp. 903{913.

[5] David H. Bailey and David Broadhurst, \A Seventeenth-Order Polylogarithm
Ladder". This manuscript is available from the URL
http://xxx.lanl.gov/abs/math.NA/9905048.

[6] David Borwein and Jonathan M. Borwein, \On An Intriguing Integral and Some
Series Related to �(4)", Proceedings of the American Mathematical Society, vol.
123, 1995, pp. 111-118.

[7] David Borwein, Jonathan M. Borwein and Roland Girgensohn, \Explicit
Evaluation of Euler Sums", Proceedings of the Edinburgh Mathematical Society,
vol. 38, 1995, pp. 277{294.

[8] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, John Wiley, New
York, 1987.

[9] Jonathan M. Borwein, David M. Bradley and David J. Broadhurst, \Evaluations of
k-fold Euler/Zagier Sums: A Compendium of Results for Arbitrary k", Electronic
Journal of Combinatorics, vol. 4, no. 2, 1997, #R5.

[10] Jonathan M. Borwein, David M. Bradley, David J. Broadhurst and Petr Lisonek,
\Combinatorial Aspects of Multiple Zeta Values", Electronic Journal of
Combinatorics, vol. 5, no. 1, 1998, #R38.

[11] Jonathan M. Borwein and David J. Broadhurst, \Ap�ery-like Reductions to Multiple
Clausen Values and Euler Sums", in preparation.

[12] David J. Broadhurst, John A. Gracey and Dirk Kreimer, \Beyond the Triangle and
Uniqueness Relations: Non-zeta Counterterms at Large N from Positive Knots",
Zeitschrift f�ur Physik, vol. C75, 1997, pp. 559{574.

[13] David J. Broadhurst and Dirk Kreimer, \Association of Multiple Zeta Values with
Positive Knots via Feynman Diagrams up to 9 Loops", Physics Letters, vol. B383,
1997, pp. 403{412.

18

[14] David J. Broadhurst, \Massive 3-loop Feynman Diagrams Reducible to SC�

Primitives of Algebras of the Sixth Root of Unity", preprint, March 1998, to appear
in European Physical Journal C. The manuscript is available from the URL
http://xxx.lanl.gov/abs/hep-th/9803091 .

[15] David J. Broadhurst, \Polylogarithmic Ladders, Hypergeometric Series and the Ten
Millionth Digits of �(3) and �(5)', preprint, March 1998. The manuscript is
available from the URL http://xxx.lanl.gov/abs/math/9803067 .

[16] Sid Chatterjee and Herman Harjono, \MPFUN++: A Multiple Precision Floating
Point Computation Package in C++", University of North Carolina, Sept. 1998.
This software is available from the URL
http://www.cs.unc.edu/Research/HARPOON/mpfun++.

[17] Jack J. Dongarra, \Performance of Various Computers Using Standard Linear
Equations Software", University of Tennessee Computer Science Technical Report,
CS-89-85, 1999. The Linpack software is available from the URL
http://www.netlib.org/linpack.

[18] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, \Analysis of PSLQ,
an Integer Relation Finding Algorithm", Mathematics of Computation, to appear.

[19] Helaman R. P. Ferguson and Rodney W. Forcade, \Generalization of the Euclidean
Algorithm for Real Numbers to All Dimensions Higher Than Two", Bulletin of the

American Mathematical Society, vol. 1, 1979, pp. 912{914.

[20] William Gropp, Ewing Lusk and Anthony Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, MIT Press, Cambridge, Mass.,
1996.

[21] J. Hastad, B. Just, J. C. Lagarias and C. P. Schnorr, \Polynomial Time Algorithms
for Finding Integer Relations Among Real Numbers", SIAM Journal of Computing,
vol. 18, 1989, pp. 859{881.

[22] Derrick H. Lehmer, \Factorization of Certain Cyclotomic Functions", Annals of
Mathematics, vol. 34, 1933, pp. 461{479.

19

